RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2018 Volume 209, Number 2, Pages 102–119 (Mi sm8644)

This article is cited in 5 papers

The growth of entire Dirichlet series in terms of generalized orders

T. Ya. Hlovaa, P. V. Filevychb

a Ya. S. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, NAS Ukraine, L'vov, Ukraine
b Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine

Abstract: Let $\alpha$ be a continuous function which increases to $+\infty$ on an infinite interval of the form $[x_0,+\infty)$. A necessary and sufficient condition is found on a sequence $(\lambda_n)_{n=0}^\infty$ increasing to $+\infty$ which ensures that for each Dirichlet series of the form $F(s)=\sum_{n=0}^\infty a_ne^{s\lambda_n}$, $s=\sigma+it$, which is absolutely convergent in $\mathbb{C}$ the following relation holds:
$$ \varlimsup_{\sigma\to+\infty}\frac{\alpha(\ln M(\sigma,F))}{\sigma}=\varlimsup_{\sigma\to+\infty}\frac{\alpha(\ln\mu(\sigma,F))}{\sigma}, $$
where $M(\sigma,F)=\sup\{|F(s)|\colon \operatorname{Re} s=\sigma\}$ and ${\mu(\sigma,F)=\max\{|a_n|e^{\sigma\lambda_n}\colon n\geqslant 0\}}$ are the maximum modulus and maximum term of the series, respectively.
Bibliography: 10 titles.

Keywords: entire Dirichlet series, maximum modulus, maximum term, generalized order.

UDC: 517.53

MSC: 30B50, 30D15

Received: 06.12.2015 and 11.10.2017

DOI: 10.4213/sm8644


 English version:
Sbornik: Mathematics, 2018, 209:2, 241–257

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025