RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2004 Volume 195, Number 12, Pages 109–122 (Mi sm868)

This article is cited in 6 papers

An example of a compact Hausdorff space whose Lebesgue, Brouwer, and inductive dimensions are different

V. V. Fedorchuk

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We construct an example of a separable compact Hausdorff space $B$ satisfying the first countability axiom of dimension $2=\dim B<\operatorname{Dg}B=3<\operatorname{ind}B=4=\operatorname{Ind}B$, where $\operatorname{Dg}$ is the inductive dimension invariant introduced by Brouwer in 1913 under the name “Dimensionsgrad”.

UDC: 515.12

MSC: Primary 54F45; Secondary 54D30, 54E45, 54F15

Received: 31.07.2003

DOI: 10.4213/sm868


 English version:
Sbornik: Mathematics, 2004, 195:12, 1809–1822

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025