RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2017 Volume 208, Number 3, Pages 28–53 (Mi sm8732)

This article is cited in 3 papers

Symmetric moment problems and a conjecture of Valent

Ch. Berga, R. Szwarcb

a Department of Mathematical Sciences, University of Copenhagen, Denmark
b Institute of Mathematics, University of Wrocław, Poland

Abstract: In 1998 Valent made conjectures about the order and type of certain indeterminate Stieltjes moment problems associated with birth and death processes which have polynomial birth and death rates of degree $p\geqslant 3$. Romanov recently proved that the order is $1/p$ as conjectured. We prove that the type with respect to the order is related to certain multi-zeta values and that this type belongs to the interval
$$ \biggl[\frac{\pi}{p\sin(\pi/p)},\,\frac{\pi}{p\sin(\pi/p)\cos(\pi/p)}\biggr], $$
which also contains the conjectured value. This proves that the conjecture about type is asymptotically correct as $p\to\infty$.
The main idea is to obtain estimates for order and type of symmetric indeterminate Hamburger moment problems when the orthonormal polynomials $P_n$ and those of the second kind $Q_n$ satisfy $P_{2n}^2(0)\sim c_1n^{-1/\beta}$ and $Q_{2n-1}^2(0)\sim c_2 n^{-1/\alpha}$, where $0<\alpha,\beta<1$ may be different, and $c_1$ and $c_2$ are positive constants. In this case the order of the moment problem is majorized by the harmonic mean of $\alpha$ and $\beta$. Here $\alpha_n\sim \beta_n$ means that $\alpha_n/\beta_n\to 1$. This also leads to a new proof of Romanov's Theorem that the order is $1/p$.
Bibliography: 19 titles.

Keywords: indeterminate moment problem, birth and death process with polynomial rates, multi-zeta values.

UDC: 517.518.88+511.331+519.218.2

MSC: Primary 44A60; Secondary 11M32, 30D15, 60J80

Received: 13.05.2016 and 19.09.2016

DOI: 10.4213/sm8732


 English version:
Sbornik: Mathematics, 2017, 208:3, 335–359

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024