RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2018 Volume 209, Number 1, Pages 37–57 (Mi sm8806)

This article is cited in 15 papers

The structure of universal functions for $L^p$-spaces, $p\in(0,1)$

M. G. Grigoryana, A. A. Sargsyanb

a Yerevan State University, Armenia
b Russian-Armenian (Slavonic) State University, Yerevan, Armenia

Abstract: The paper sheds light on the structure of functions which are universal for $L^p$-spaces, $p\in(0,1)$, with respect to the signs of Fourier-Walsh coefficients. It is shown that there exists a measurable set $E\subset [0,1]$, whose measure is arbitrarily close to $1$, such that by an appropriate change of values of any function $f\in L^1[0,1]$ outside $E$ a function $\widetilde f\in L^1[0,1]$ can be obtained that is universal for each $L^p[0,1]$-space, $p\in(0,1)$, with respect to the signs of Fourier-Walsh coefficients.
Bibliography: 28 titles.

Keywords: universal function, Fourier coefficients, Walsh system, convergence in a metric.

UDC: 517.51

MSC: 42C10, 43A15

Received: 27.08.2016 and 27.01.2017

DOI: 10.4213/sm8806


 English version:
Sbornik: Mathematics, 2018, 209:1, 35–55

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024