RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2018 Volume 209, Number 7, Pages 71–105 (Mi sm8876)

This article is cited in 4 papers

The growth of polynomials orthogonal on the unit circle with respect to a weight $w$ that satisfies $w,w^{-1}\in L^\infty(\mathbb{T})$

S. A. Denisovab

a Department of Mathematics, University of Wisconsin–Madison, Madison, WI, USA
b Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow

Abstract: We consider the polynomials $\{\varphi_n(z,w)\}$ orthogonal on the circle with respect to a weight $w$ that satisfies $w,w^{-1}\in L^\infty(\mathbb{T})$ and show that $\|\varphi_n(e^{i\theta},w)\|_{L^\infty(\mathbb{T})}$ can grow in $n$ at a certain rate.
Bibliography: 21 titles.

Keywords: polynomials orthogonal on the circle, Steklov's conjecture.

UDC: 517.538.3

MSC: 42C05

Received: 07.12.2016 and 30.05.2017

DOI: 10.4213/sm8876


 English version:
Sbornik: Mathematics, 2018, 209:7, 985–1018

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024