RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2018 Volume 209, Number 5, Pages 62–73 (Mi sm8932)

This article is cited in 5 papers

Special weak limits and simple spectrum of the tensor products of flows

M. S. Lobanov, V. V. Ryzhikov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: An example of a measure-preserving flow $T_t$ for which the tensor product $T_t\otimes T_{\alpha t}$ has simple spectrum for all $\alpha > 1$ is constructed. The construction of the flow uses asymptotically infinitesimal spacers and spacers obtained using results in finite field theory. For the spectral measure $\sigma$ of a flow of this type, any nonorthogonal projection of the measure $\sigma\times\sigma$ onto the diagonal in $\mathbb R\times \mathbb R$ is a 1-1 mapping $(\operatorname{mod} 0)$ with respect to the measure $\sigma\times\sigma$.
Bibliography: 12 titles.

Keywords: ergodic flow, lacunar rigidity, Galois fields, special weak limits, simple spectrum, tensor product.

UDC: 517.987

MSC: 37A25, 37A30

Received: 28.02.2017 and 06.09.2017

DOI: 10.4213/sm8932


 English version:
Sbornik: Mathematics, 2018, 209:5, 660–671

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024