RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2018 Volume 209, Number 8, Pages 152–160 (Mi sm8971)

This article is cited in 5 papers

A canonical basis of two-cycles on a $K3$ surface

I. A. Taimanovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University

Abstract: We construct a basis of two-cycles on a $K3$ surface; in this basis, the intersection form takes the canonical form $2E_8(-1) \oplus 3H$. Elements of the basis are realized by formal sums of smooth submanifolds.
Bibliography: 8 titles.

Keywords: $K3$ surface, intersection form.

UDC: 515.165.2+515.162.4

MSC: Primary 14J28; Secondary 57N13

Received: 22.05.2017 and 05.02.2018

DOI: 10.4213/sm8971


 English version:
Sbornik: Mathematics, 2018, 209:8, 1248–1256

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025