RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1995 Volume 186, Number 1, Pages 149–160 (Mi sm9)

This article is cited in 10 papers

A differentiable manifold with non-coinciding dimensions under the continuum hypothesis

V. V. Fedorchuk

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: Under the assumption of the continuum hypothesis we construct a differentiable $n$-manifold $M^{n,m}$, $4\leqslant n<m$, of dimension
$$ m-1\leqslant\dim M^{n,m}\leqslant m<m+n-3\leqslant\operatorname{Ind}M^{n,m}\leqslant m+n-1. $$
The space $M^{n,m}$ is perfectly normal and hereditarily separable.

UDC: 515.12

MSC: Primary 54F45; Secondary 57R

Received: 22.11.1993


 English version:
Sbornik: Mathematics, 1995, 186:1, 151–162

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025