RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2018 Volume 209, Number 11, Pages 3–31 (Mi sm9017)

This article is cited in 2 papers

Extremal trajectories in the sub-Lorentzian problem on the Engel group

A. A. Ardentova, Yu. L. Sachkova, T. Huangb, X. Yangc

a Ailamazyan Program Systems Institute of Russian Academy of Sciences
b Zhejiang Sci-Tech University, Hangzhou, The People's Republic of China
c Nanjing University of Science and Technology, The People's Republic of China

Abstract: Let $\mathbb{E}$ be the Engel group and let $D$ be a rank-two left-invariant distribution with Lorentzian metric on $\mathbb{E}$. The sub-Lorentzian problem is stated as the problem of maximizing the sub-Lorentzian distance. A parametrization of timelike and spacelike normal extremal trajectories is obtained in terms of Jacobi elliptic functions. Discrete symmetry groups are described in the cases of timelike and spacelike trajectories; in both cases the fixed points and the corresponding Maxwell points are calculated for each symmetry. These calculations underlie estimates for the cut time (when the trajectory ceases to be globally optimal).
Bibliography: 17 titles.

Keywords: Engel group, extremal trajectories, sub-Lorentzian metric, Jacobi functions.

UDC: 517.977

MSC: Primary 53C17, 53C50; Secondary 22E25

Received: 16.10.2017

DOI: 10.4213/sm9017


 English version:
Sbornik: Mathematics, 2018, 209:11, 1547–1574

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025