RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2019 Volume 210, Number 3, Pages 75–130 (Mi sm9018)

This article is cited in 8 papers

Is Zaremba's conjecture true?

I. D. Kan

Moscow Aviation Institute (National Research University), Moscow, Russia

Abstract: For finite continued fractions in which all partial quotients lie in the alphabet $\{1,2,3,5\}$, it is shown that the set of denominators not exceeding $N$ has cardinality $\gg N^{0.85}$. A calculation using an analogue of Bourgain-Kontorovich's theorem from 2011 gives $\gg N^{0.80}$.
Bibliography: 25 titles.

Keywords: continued fraction, trigonometric sum, Zaremba's conjecture, partial quotients, continuant, Hausdorff dimension.

UDC: 511.36+511.216

MSC: 11А55, 11J70, 11Y65

Received: 16.10.2017 and 29.04.2018

DOI: 10.4213/sm9018


 English version:
Sbornik: Mathematics, 2019, 210:3, 364–416

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024