RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2018 Volume 209, Number 12, Pages 87–116 (Mi sm9049)

This article is cited in 3 papers

Regular subcategories in bounded derived categories of affine schemes

A. Elaginab, V. A. Luntscb

a Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
b National Research University Higher School of Economics, Moscow
c Indiana University, Bloomington, IN, USA

Abstract: Let $R$ be a commutative Noetherian ring such that $X=\operatorname{Spec} R$ is connected. We prove that the category $D^b (\operatorname{coh} X)$ contains no proper full triangulated subcategories which are strongly generated. We also bound below the Rouquier dimension of a triangulated category $\mathscr{T}$, if there exists a triangulated functor $\mathscr{T} \to D^b(\operatorname{coh} X)$ with certain properties. Applications are given to the cohomological annihilator of $R$ and to point-like objects in $\mathscr{T}$.
Bibliography: 15 titles.

Keywords: derived category, affine scheme, strong generator.

UDC: 512.73

MSC: 14F05, 18E30

Received: 13.12.2017 and 17.09.2018

DOI: 10.4213/sm9049


 English version:
Sbornik: Mathematics, 2018, 209:12, 1756–1782

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024