RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2019 Volume 210, Number 2, Pages 115–142 (Mi sm9061)

This article is cited in 5 papers

Tauberian class estimates for vector-valued distributions

S. Pilipovića, J. Vindasb

a Department of Mathematics and Informatics, University of Novi Sad, Novi Sad, Serbia
b Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Ghent, Belgium

Abstract: We study Tauberian properties of regularizing transforms of vector-valued tempered distributions. The transforms have the form $M^\mathbf f_\varphi(x,y)=(\mathbf f\ast\varphi_y)(x)$, where the kernel $\varphi$ is a test function and $\varphi_y(\cdot)=y^{-n}\varphi(\cdot/y)$. We investigate conditions which ensure that a distribution that a priori takes values in a locally convex space actually takes values in a narrower Banach space. Our goal is to characterize spaces of Banach-space-valued tempered distributions in terms of so-called class estimates for the transform $M^\mathbf f_\varphi(x,y)$. Our results generalize and improve earlier Tauberian theorems due to Drozhzhinov and Zav'yalov. Special attention is paid to finding the optimal class of kernels $\varphi$ for which these Tauberian results hold.
Bibliography: 24 titles.

Keywords: regularizing transforms, class estimates, Tauberian theorems, vector-valued distributions, wavelet transform.

UDC: 517.53

MSC: Primary 40E05, 46F05; Secondary 46F12

Received: 05.01.2018

DOI: 10.4213/sm9061


 English version:
Sbornik: Mathematics, 2019, 210:2, 272–296

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025