RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2020 Volume 211, Number 3, Pages 3–31 (Mi sm9185)

This article is cited in 2 papers

On the heritability of the Sylow $\pi$-theorem by subgroups

E. P. Vdovinab, N. Ch. Manzaevab, D. O. Revinab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia

Abstract: Let $\pi$ be a set of primes. We say that the Sylow $\pi$-theorem holds for a finite group $G$, or $G$ is a $\mathscr D_\pi$-group, if the maximal $\pi$-subgroups of $G$ are conjugate. Obviously, the Sylow $\pi$-theorem implies the existence of $\pi$-Hall subgroups. In this paper, we give an affirmative answer to Problem 17.44, (b), in the Kourovka notebook: namely, we prove that in a $\mathscr D_\pi$-group an overgroup of a $\pi$-Hall subgroup is always a $\mathscr D_\pi$-group.
Bibliography: 52 titles.

Keywords: finite group, $\pi$-Hall subgroup, $\mathscr D_\pi$-group, group of Lie type, maximal subgroup.

UDC: 512.542

MSC: Primary 20D20; Secondary 20D05

Received: 24.10.2018 and 14.11.2019

DOI: 10.4213/sm9185


 English version:
Sbornik: Mathematics, 2020, 211:3, 309–335

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024