RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2020 Volume 211, Number 6, Pages 40–94 (Mi sm9199)

This article is cited in 5 papers

Sobolev $W^1_p$-spaces on $d$-thick closed subsets of $\mathbb R^n$

S. K. Vodopyanova, A. I. Tyulenevb

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Abstract: Let $S\subset\mathbb R^n$ be a nonempty closed set such that for some $d\in[0,n]$ and $\varepsilon>0$ the $d$-Hausdorff content $\mathscr H^d_\infty(S\cap Q(x,r))\geqslant\varepsilon r^d$ for all cubes $Q(x,r)$ with centre $x\in S$ and edge length $2r\in(0,2]$. For each $p>\max\{1,n-d\}$ we give an intrinsic characterization of the trace space $W_p^1(\mathbb R^n)|_S$ of the Sobolev space $W_p^1(\mathbb R^n)$ to the set $S$. Furthermore, we prove the existence of a bounded linear operator $\operatorname{Ext}\colon W_p^1(\mathbb R^n)|_S\to W_p^1(\mathbb R^n)$ such that $\operatorname{Ext}$ is the right inverse to the standard trace operator. Our results extend those available in the case $p\in(1,n]$ for Ahlfors-regular sets $S$.
Bibliography: 36 titles.

Keywords: Sobolev spaces, Whitney problem, traces, extension operators.

UDC: 517.518

MSC: 46E35, 28A78, 28A25

Received: 27.11.2018 and 14.02.2020

DOI: 10.4213/sm9199


 English version:
Sbornik: Mathematics, 2020, 211:6, 786–837

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025