RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2019 Volume 210, Number 12, Pages 43–66 (Mi sm9241)

This article is cited in 2 papers

Antisymmetric paramodular forms of weight 3

V. A. Gritsenkoab, H. Wanga

a Laboratoire Paul Painlevé, Université de Lille, Villeneuve d’Ascq, France
b National Research University Higher School of Economics, Moscow, Russia

Abstract: The problem of the construction of antisymmetric paramodular forms of canonical weight 3 has been open since 1996. Any cusp form of this type determines a canonical differential form on any smooth compactification of the moduli space of Kummer surfaces associated to $(1,t)$-polarised abelian surfaces. In this paper, we construct the first infinite family of antisymmetric paramodular forms of weight $3$ as automorphic Borcherds products whose first Fourier-Jacobi coefficient is a theta block.
Bibliography: 32 titles.

Keywords: Siegel modular forms, automorphic Borcherds products, theta functions and Jacobi forms, moduli space of abelian and Kummer surfaces, affine Lie algebras and hyperbolic Lie algebras.

UDC: 515.178.5+512.774.5+512.818.4

MSC: 11F27, 11F30, 11F46, 11F50, 11F55, 14K25

Received: 20.02.2019 and 10.07.2019

DOI: 10.4213/sm9241


 English version:
Sbornik: Mathematics, 2019, 210:12, 1702–1723

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024