RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1994 Volume 185, Number 9, Pages 81–94 (Mi sm925)

This article is cited in 15 papers

On properties of solutions of a class of nonlinear second-order equations

V. A. Kondrat'ev, A. A. Kon'kov


Abstract: The boundary value problem
$$ Lu=f(|u|) \quad \text {in}\quad \Omega , \qquad u\big|_{\partial \Omega }=w, $$
is studied, where $\Omega$ is an arbitrary, possibly unbounded, open subset of $R^n$, $L=\sum\limits_{i,j=1}^n\dfrac \partial {\partial x_i} \biggl(a_{ij}(x)\dfrac \partial {\partial x_j}\biggr)$ is a differential operator of elliptic type with measurable coefficients, and $w$, $f$ are some functions.

UDC: 517.9

MSC: 35J65

Received: 27.10.1993


 English version:
Russian Academy of Sciences. Sbornik. Mathematics, 1995, 83:1, 67–77

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024