RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2020 Volume 211, Number 6, Pages 107–131 (Mi sm9302)

This article is cited in 13 papers

Functions with universal Fourier-Walsh series

M. G. Grigoryan

Faculty of Physics, Yerevan State University, Yerevan, Republic of Armenia

Abstract: We prove results on the existence of functions whose Fourier series in the Walsh system are universal in some sense or other in the function classes $L^p[0,1]$, $0<p<1$, and $M[0,1]$. We also give a description of the structure of these functions.
Bibliography: 30 titles.

Keywords: universal functions, Fourier-Walsh series, convergence, almost everywhere convergence.

UDC: 517.538

PACS: ÓÄÊ 517.538

MSC: 42C10, 43A15

Received: 07.07.2019 and 08.12.2019

DOI: 10.4213/sm9302


 English version:
Sbornik: Mathematics, 2020, 211:6, 850–874

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024