RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2021 Volume 212, Number 11, Pages 109–115 (Mi sm9328)

Estimates for the volume of the zeros of a holomorphic function depending on a complex parameter

A. M. Kytmanova, A. Sadullaevb

a Siberian Federal University, Krasnoyarsk, Russia
b National University of Uzbekistan, Tashkent, Uzbekistan

Abstract: Given a holomorphic function $f(\sigma,z)$, $\sigma\in\mathbb{C}^{m}$, $z\in\mathbb{C}^{n}$, an estimate for the volume of the zero set $\{z\colon f(\sigma,z)=0\}$ is presented which holds uniformly in $\sigma $. Such estimates are quite useful in investigations of oscillatory integrals of the form
$$ J(\lambda,\sigma)=\int_{\mathbb{R}^{n} }a(\sigma, x)e^{i\lambda \Phi (\sigma, x)}\,dx $$
as $\lambda \to \infty $. Here $a(\sigma, x)\in C_{0}^{\infty } (\mathbb{R}^{n} \times\mathbb{R}^{m})$ is a so-called amplitude function and $\Phi (\sigma, x)$ is a phase function.
Bibliography: 9 titles.

Keywords: Weierstrass's preparation theorem, analytic set, regular point, volume of an analytic set, Wirtinger's theorem.

UDC: 517.553

MSC: 32A60

Received: 17.09.2019 and 22.07.2020

DOI: 10.4213/sm9328


 English version:
Sbornik: Mathematics, 2021, 212:11, 1608–1614

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025