RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2021 Volume 212, Number 7, Pages 39–83 (Mi sm9437)

This article is cited in 6 papers

A strengthening of the Bourgain-Kontorovich method: three new theorems

I. D. Kan

Moscow Aviation Institute (National Research University), Moscow, Russia

Abstract: Consider the set $\mathfrak{D}_{\mathbf{A}}$ of irreducible denominators of the rational numbers representable by finite continued fractions all of whose partial quotients belong to some finite alphabet $\mathbf{A}$. Let the set of infinite continued fractions with partial quotients in this alphabet have Hausdorff dimension $\Delta_{\mathbf{A}}$ satisfying $\Delta_{\mathbf{A}} \geqslant0.7748\dots$ . Then $\mathfrak{D}_{\mathbf{A}}$ contains a positive share of positive integers. A previous similar result of the author of 2017 was related to the inequality $\Delta_{\mathbf{A}} >0.7807\dots$; in the original 2011 Bourgain-Kontorovich paper, $\Delta_{\mathbf{A}} >0.9839\dots$ .
Bibliography: 28 titles.

Keywords: continued fraction, trigonometric sum, Zaremba's conjecture, Hausdorff dimension.

UDC: 511.36+511.336

PACS: 511.36 + 511.336

MSC: Primary 11J70; Secondary 11A55

Received: 04.05.2020 and 27.11.2020

DOI: 10.4213/sm9437


 English version:
Sbornik: Mathematics, 2021, 212:7, 921–964

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024