RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2021 Volume 212, Number 10, Pages 96–130 (Mi sm9462)

Asymptotics of the scattering operator for the wave equation in a singularly perturbed domain

D. V. Korikov

Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia

Abstract: A family of Cauchy-Dirichlet problems for the wave equations in unbounded domains $\Lambda_{\varepsilon}$ is considered (here $\varepsilon\geqslant 0$ is a small parameter); a scattering operator $\mathbb{S}_{\varepsilon}$ is associated with each domain $\Lambda_\varepsilon$. For $\varepsilon>0$ the boundaries of $\Lambda_{\varepsilon}$ are smooth, whilw the boundary of the limit domain $\Lambda_{0}$ contains a conical point. The asymptotics of $\mathbb{S}_{\varepsilon}$ as $\varepsilon\to 0$ is determined.
Bibliography: 11 titles.

Keywords: wave equation, singularly perturbed domains, scattering operator.

UDC: 517.956.32+517.956.8

MSC: 35L05, 35P25

Received: 10.06.2020 and 07.04.2021

DOI: 10.4213/sm9462


 English version:
Sbornik: Mathematics, 2021, 212:10, 1436–1470

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025