RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2021 Volume 212, Number 11, Pages 73–88 (Mi sm9522)

This article is cited in 2 papers

A probability estimate for the discrepancy of Korobov lattice points

A. A. Illarionov

Khabarovsk Division of the Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences, Khabarovsk, Russia

Abstract: Bykovskii (2002) obtained the best current upper estimate for the minimum discrepancy of the Korobov lattice points from the uniform distribution. We show that this estimate holds for almost all $s$-dimensional Korobov lattices of $N$ nodes, where $s\geqslant 3$, and $N$ is a prime number.
Bibliography: 14 titles.

Keywords: Korobov lattice, uniform distribution, discrepancy from the uniform distribution, sums over sublattices.

UDC: 519.644.7+511.43

MSC: Primary 11K36, 11H06, 65D30; Secondary 41A55

Received: 30.10.2020 and 11.06.2021

DOI: 10.4213/sm9522


 English version:
Sbornik: Mathematics, 2021, 212:11, 1571–1587

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025