RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2022 Volume 213, Number 2, Pages 50–95 (Mi sm9535)

This article is cited in 5 papers

A hyperbolicity criterion for a class of diffeomorphisms of an infinite-dimensional torus

S. D. Glyzin, A. Yu. Kolesov

Centre of Integrable Systems, P.G. Demidov Yaroslavl State University, Yaroslavl, Russia

Abstract: On an infinite-dimensional torus $\mathbb{T}^{\infty} = E/2\pi\mathbb{Z}^{\infty}$, where $E$ is an infinite-dimensional real Banach space and $\mathbb{Z}^{\infty}$ is an abstract integer lattice, a special class of diffeomorphisms $\operatorname{Diff}(\mathbb{T}^{\infty})$ is considered. It consists of the maps $G\colon \mathbb{T}^{\infty}\to\mathbb{T}^{\infty}$ equal to sums of invertible bounded linear operators preserving $\mathbb{Z}^{\infty}$ and $C^1$-smooth periodic additives. Necessary and sufficient conditions ensuring that such maps are hyperbolic (that is, are Anosov diffeomorphisms) are obtained.
Bibliography: 15 titles.

Keywords: map, hyperbolicity, infinite-dimensional torus, Anosov diffeomorphism.

UDC: 517.926+517.938

MSC: Primary 37D20, 46T20; Secondary 37E30, 58B20

Received: 30.11.2020 and 26.10.2021

DOI: 10.4213/sm9535


 English version:
Sbornik: Mathematics, 2022, 213:2, 173–215

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024