RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2021 Volume 212, Number 12, Pages 40–76 (Mi sm9577)

This article is cited in 9 papers

The polynomial Hermite-Padé $m$-system for meromorphic functions on a compact Riemann surface

A. V. Komlov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Abstract: Given a tuple of $m+1$ germs of arbitrary analytic functions at a fixed point, we introduce the polynomial Hermite-Padé $m$-system, which includes the Hermite-Padé polynomials of types I and II. In the generic case we find the weak asymptotics of the polynomials of the Hermite-Padé $m$-system constructed from the tuple of germs of functions $1, f_1,\dots,f_m$ that are meromorphic on an $(m+1)$-sheeted compact Riemann surface $\mathfrak R$. We show that if $f_j = f^j$ for some meromorphic function $f$ on $\mathfrak R$, then with the help of the ratios of polynomials of the Hermite-Padé $m$-system we recover the values of $f$ on all sheets of the Nuttall partition of $\mathfrak R$, apart from the last sheet.
Bibliography: 18 titles.

Keywords: rational approximation, Hermite-Padé polynomials, weak asymptotics, Riemann surface.

UDC: 517.538.5

MSC: Primary 41A10, 41A21; Secondary 30E10, 30F99

Received: 16.03.2021 and 15.07.2021

DOI: 10.4213/sm9577


 English version:
Sbornik: Mathematics, 2021, 212:12, 1694–1729

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024