RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2022 Volume 213, Number 6, Pages 125–174 (Mi sm9645)

This article is cited in 7 papers

Hardy-Littlewood-Sobolev inequality for $p=1$

D. M. Stolyarovab

a Saint Petersburg State University, St. Petersburg, Russia
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia

Abstract: Let $\mathcal{W}$ be a closed dilation and translation invariant subspace of the space of $\mathbb{R}^\ell$-valued Schwartz distributions in $d$ variables. We show that if the space $\mathcal{W}$ does not contain distributions of the type $a\otimes \delta_0$, $\delta_0$ being the Dirac delta, then the inequality $\|\operatorname{I}_\alpha [f]\|_{L_{d/(d-\alpha),1}}\lesssim \|f\|_{L_1}$ holds true for functions $f\in\mathcal{W}\cap L_1$ with a uniform constant; here $\operatorname{I}_\alpha$ is the Riesz potential of order $\alpha$ and $L_{p,1}$ is the Lorentz space. As particular cases, this result implies the inequality $\|\nabla^{m-1} f\|_{L_{d/(d-1),1}} \lesssim \|A f\|_{L_1}$, where $A$ is a cancelling elliptic differential operator of order $m$, and the inequality $\|\operatorname{I}_\alpha f\|_{L_{d/(d-\alpha),1}} \lesssim \|f\|_{L_1}$, where $f$ is a divergence free vector field.
Bibliography: 59 titles.

Keywords: Hardy-Littlewood-Sobolev inequality, Bourgain-Brezis inequalities, cancelling differential operators.

MSC: Primary 46E35, 42B35; Secondary 35N05, 42B25

Received: 19.07.2021 and 04.03.2022

DOI: 10.4213/sm9645


 English version:
Sbornik: Mathematics, 2022, 213:6, 844–889

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025