RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2023 Volume 214, Number 5, Pages 140–152 (Mi sm9689)

Slim exceptional sets of Waring-Goldbach problems involving squares and cubes of primes

X. Han, H. Liu

School of Mathematics and Statistics, Shandong Normal University, Jinan, P.R. China

Abstract: Let $p_{1},p_{2},\dots,p_{6}$ be prime numbers. First we show that, with at most $O(N^{1/12+\varepsilon})$ exceptions, all even positive integers not exceeding $N$ can be represented in the form $p_{1}^{2}+p_{2}^{2}+p_{3}^{3}+p_{4}^{3}+p_{5}^{3}+p_{6}^{3}$, which improves the previous result $O(N^{1/4+\varepsilon})$ obtained by Y. H. Liu. Moreover, we also prove that, with at most $O(N^{5/12+\varepsilon})$ exceptions, all even positive integers not exceeding $N$ can be represented in the form $p_{1}^{2}+p_{2}^{3}+p_{3}^{3}+p_{4}^{3}+p_{5}^{3}+p_{6}^{3}$.
Bibliography: 21 titles.

Keywords: Waring-Goldbach problem, exceptional set, Hardy-Littlewood method.

MSC: Primary 11P32, 11P05; Secondary 11P55

Received: 08.11.2021 and 15.11.2022

DOI: 10.4213/sm9689


 English version:
Sbornik: Mathematics, 2023, 214:5, 744–756

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024