RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2022 Volume 213, Number 9, Pages 70–96 (Mi sm9697)

This article is cited in 3 papers

Distribution of Korobov-Hlawka sequences

A. A. Illarionov

Khabarovsk Division of the Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences, Khabarovsk, Russia

Abstract: Let $a_1, \dots, a_s$ be integers and $N$ be a positive integer. Korobov (1959) and Hlawka (1962) proposed to use the points
$$ x^{(k)}=\biggl(\biggl\{\frac{a_1 k}N\biggr\}, \dots, \biggl\{\frac{a_1 k}N\biggr\}\biggr), \qquad k=1,\dots, N, $$
as nodes of multidimensional quadrature formulae. We obtain some new results related to the distribution of the sequence $K_N(a)=\{x^{(1)},\dots,x^{(N)}\}$. In particular, we prove that
$$ \frac{\ln^{s-1} N}{N \ln\ln N} \underset{s}\ll D(K_N(a)) \underset{s}\ll \frac{\ln^{s-1} N}{N} \ln\ln N $$
for ‘almost all’ $a\in (\mathbb Z_N^*)^s$, where $D(K_N(a))$ is the discrepancy of the sequence $K_N(a)$ from the uniform distribution and $\mathbb Z^*_N$ is the reduced system of residues modulo $N$.
Bibliography: 18 titles.

Keywords: uniform distribution, discrepancy from the uniform distribution, Korobov-Hlawka sequences, Korobov grids.

MSC: Primary 11K38; Secondary 41A55

Received: 24.11.2021

DOI: 10.4213/sm9697


 English version:
Sbornik: Mathematics, 2022, 213:9, 1222–1249

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025