Abstract:
Let $a_1, \dots, a_s$ be integers and $N$ be a positive integer. Korobov (1959) and Hlawka (1962) proposed to use the points
$$
x^{(k)}=\biggl(\biggl\{\frac{a_1 k}N\biggr\}, \dots, \biggl\{\frac{a_1 k}N\biggr\}\biggr),
\qquad k=1,\dots, N,
$$
as nodes of multidimensional quadrature formulae. We obtain some new results related to the distribution of the sequence $K_N(a)=\{x^{(1)},\dots,x^{(N)}\}$. In particular, we prove that
$$
\frac{\ln^{s-1} N}{N \ln\ln N} \underset{s}\ll D(K_N(a))
\underset{s}\ll \frac{\ln^{s-1} N}{N} \ln\ln N
$$
for ‘almost all’ $a\in (\mathbb Z_N^*)^s$, where $D(K_N(a))$ is the discrepancy of the sequence $K_N(a)$ from the uniform distribution and $\mathbb Z^*_N$ is the reduced system of residues modulo $N$.
Bibliography: 18 titles.
Keywords:uniform distribution, discrepancy from the uniform distribution, Korobov-Hlawka sequences, Korobov grids.