RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2022 Volume 213, Number 10, Pages 108–129 (Mi sm9707)

This article is cited in 2 papers

Some applications of growth in $\mathrm{SL}_2(\pmb{\mathbb{F}}_p)$ to the proof of modular versions of Zaremba's conjecture

M. V. Lyamkin

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Abstract: Using growth in $\mathrm{SL}_2(\mathbb{F}_p)$ we prove that for every prime number $p$ and any positive integer $u$ there are positive integers $q=O(p^{2+\varepsilon})$, $\varepsilon > 0$, $q \equiv u \pmod{p}$, and $a < p$, $(a, p)=1$, such that the partial quotients of the continued fraction of $a/q$ are bounded by an absolute constant.
Bibliography: 21 titles.

Keywords: continued fractions, Zaremba conjecture, growth in groups.

MSC: 11A55, 20C15

Received: 11.12.2021 and 05.02.2022

DOI: 10.4213/sm9707


 English version:
Sbornik: Mathematics, 2022, 213:10, 1415–1435

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025