RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2022 Volume 213, Number 9, Pages 97–137 (Mi sm9732)

This article is cited in 3 papers

Solomyak-type eigenvalue estimates for the Birman-Schwinger operator

F. A. Sukochev, D. V. Zanin

School of Mathematics and Statistics, University of New South Wales, Sydney, Australia

Abstract: We revise the Cwikel-type estimate for the singular values of the operator $(1-\Delta_{\mathbb{T}^d})^{-d/4}M_f(1-\Delta_{\mathbb{T}^d})^{-d/4}$ on the torus $\mathbb{T}^d$, for the ideal $\mathcal{L}_{1,\infty}$ and $f\in L\log L(\mathbb{T}^d)$ (the Orlicz space), which was established by Solomyak in even dimensions, and we extend it to odd dimensions. We show that this result does not literally extend to Laplacians on $\mathbb{R}^d$, neither for Orlicz spaces on $\mathbb{R}^d$, nor for any symmetric function space on $\mathbb{R}^d$. Nevertheless, we obtain a new positive result on (symmetrized) Solomyak-type estimates for Laplacians on $\mathbb{R}^d$ for an arbitrary positive integer $d$ and $f$ in $L\log L(\mathbb{R}^d)$. The last result reveals the conformal invariance of Solomyak-type estimates.
Bibliography: 44 titles.

Keywords: Birman-Schwinger operator, Solomyak-type estimates, Orlicz spaces, symmetric spaces.

MSC: Primary 47B10; Secondary 46E30, 47L20

Received: 07.02.2022 and 18.04.2022

DOI: 10.4213/sm9732


 English version:
Sbornik: Mathematics, 2022, 213:9, 1250–1289

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025