RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2023 Volume 214, Number 1, Pages 31–42 (Mi sm9743)

This article is cited in 3 papers

Jordan property for groups of bimeromorphic automorphisms of compact Kähler threefolds

A. S. Golotaab

a Laboratory of Algebraic Geometry and Its Applications, National Research University Higher School of Economics, Moscow, Russia
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Abstract: Let $X$ be a nonuniruled compact Kähler space of dimension $3$. We show that the group of bimeromorphic automorphisms of $X$ is Jordan. More generally, the same result holds for any compact Kähler space admitting a quasi-minimal model.
Bibliography: 29 titles.

Keywords: Kähler manifold, bimeromorphic map, minimal model, Jordan property.

MSC: 32C15, 32Q15

Received: 02.03.2022 and 15.09.2022

DOI: 10.4213/sm9743


 English version:
Sbornik: Mathematics, 2023, 214:1, 28–38

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024