RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2023 Volume 214, Number 5, Pages 97–127 (Mi sm9761)

This article is cited in 3 papers

A combinatorial invariant of gradient-like flows on a connected sum of $\mathbb{S}^{n-1}\times\mathbb{S}^1$

V. Z. Grines, E. Ya. Gurevich

National Research University Higher School of Economics, Nizhnii Novgorod, Russia

Abstract: We obtain necessary and sufficient conditions for the topological equivalence of gradient-like flows without heteroclinic intersections defined on the connected sum of a finite number of manifolds homeomorphic to $\mathbb{S}^{n-1}\times \mathbb{S}^1$, $n\geq 3$. For $n>3$, this result extends substantially the class of manifolds such that structurally stable systems on these manifolds admit a topological classification.
Bibliography: 36 titles.

Keywords: topological classification, gradient-like flow, Morse-Smale flow.

MSC: 37B35, 37B25, 37B30, 37C15, 37C20, 37C75

Received: 28.03.2022 and 09.12.2022

DOI: 10.4213/sm9761


 English version:
Sbornik: Mathematics, 2023, 214:5, 703–731

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024