RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2023 Volume 214, Number 3, Pages 120–134 (Mi sm9786)

On a class of interpolation inequalities on the 2D sphere

S. V. Zelikab, A. A. Ilyinc

a Department of Mathematics, University of Surrey, Guildford, UK
b School of Mathematics and Statistics, Lanzhou University, Lanzhou, P. R. China
c Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow, Russia

Abstract: We prove estimates for the $L^p$-norms of systems of functions and divergence-free vector functions that are orthonormal in the Sobolev space $H^1$ on the 2D sphere. As a corollary, order sharp constants for the embedding $H^1\hookrightarrow L^q$, $q<\infty$, are obtained in the Gagliardo-Nirenberg interpolation inequalities.
Bibliography: 25 titles.

Keywords: Gagliardo-Nirenberg inequalities, sphere, orthonormal systems.

MSC: 26D10, 46E35

Received: 25.04.2022

DOI: 10.4213/sm9786


 English version:
Sbornik: Mathematics, 2023, 214:3, 396–410

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025