RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2023 Volume 214, Number 7, Pages 27–41 (Mi sm9815)

Karatsuba's divisor problem and related questions

M. R. Gabdullina, S. V. Konyagina, V. V. Iudelevichb

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia

Abstract: We prove that
$$ \sum_{p \leq x} \frac{1}{\tau(p-1)} \asymp \frac{x}{(\log x)^{3/2}} \quad\text{and}\quad \sum_{n \leq x} \frac{1}{\tau(n^2+1)} \asymp \frac{x}{(\log x)^{1/2}}, $$
where $\tau(n)=\sum_{d\mid n}1$ is the number of divisors of $n$, and the first sum is taken over prime numbers.
Bibliography: 14 titles.

Keywords: divisor function, sums of values of functions, shifted primes and squares.

MSC: 11N35, 11N45

Received: 25.07.2022 and 31.03.2023

DOI: 10.4213/sm9815


 English version:
Sbornik: Mathematics, 2023, 214:7, 919–933

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025