RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2024 Volume 215, Number 2, Pages 103–119 (Mi sm9891)

Basis property of the Legendre polynomials in variable exponent Lebesgue spaces

M. G. Magomed-Kasumovab, T. N. Shakh-Emirova, R. M. Gadzhimirzaeva

a Daghestan Federal Research Centre of the Russian Academy of Sciences, Makhachkala, Russia
b Vladikavkaz Scientific Centre of the Russian Academy of Sciences, Vladikavkaz, Russia

Abstract: Sharapudinov proved that the Legendre polynomials form a basis of the Lebesgue space with variable exponent $p(x)$ if $p(x) > 1$ satisfies the Dini–Lipschitz condition and is constant near the endpoints of the orthogonality interval. We prove that the system of Legendre polynomials forms a basis of these spaces without the condition that the variable exponent be constant near the endpoints.
Bibliography: 9 titles.

Keywords: Lebesgue space, variable exponent, Legendre polynomials, basis, the Dini–Lipschitz condition.

MSC: 42C10, 46E30

Received: 01.02.2023 and 15.07.2023

DOI: 10.4213/sm9891


 English version:
Sbornik: Mathematics, 2024, 215:2, 234–249

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024