RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1993 Volume 184, Number 7, Pages 3–48 (Mi sm997)

This article is cited in 30 papers

Rational closures of group rings of left-ordered groups

N. I. Dubrovin


Abstract: Suppose $K$ is a division ring, and $G$ is a left-ordered group such that for any Dedekind cut $\varepsilon$ of the linearly ordered set $(G,\le)$ the group $S=\{g\in G\mid g\varepsilon=\varepsilon\}$ is such that $KS$ is a right Ore domain and the group $H=\{g\in G\mid gP(G)g^{-1}=P(G)\}$ is cofinal in $G$. Then the group ring $KG$ can be embedded in a division ring having a valuation in the sense of Mathiak with values in $G$. If $G$ is the group of a trifolium, this construction leads to an example of a chain domain with a prime, but not completely prime, ideal.

UDC: 512

MSC: Primary 16S34; Secondary 20F60, 06F15

Received: 21.04.1992


 English version:
Russian Academy of Sciences. Sbornik. Mathematics, 1994, 79:2, 231–263

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025