RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2005 Volume 46, Number 5, Pages 1079–1084 (Mi smj1023)

Finite Sylow subgroups in simple locally finite groups of Lie type

M. Kuzucuoglua, V. D. Mazurovb

a Middle East Technical University
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: The main result of the paper is the following
Theorem. {\it Let $S=\{r_0,r_1,\dots,r_n\}$ be a finite nonempty set of primes and let $L$ be a Lie type of Chevalley groups. Then there exists a locally finite field $F$ of characteristic $r_0$ such that Sylow $r$-subgroups of the simple group $L(F)$ of type $L$ over $F$ are finite if and only if $r\notin S$.}

Keywords: Sylow subgroups, local finiteness, simple group.

UDC: 512.54

Received: 21.03.2005


 English version:
Siberian Mathematical Journal, 2005, 46:5, 863–866

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025