RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2005 Volume 46, Number 6, Pages 1248–1264 (Mi smj1037)

This article is cited in 32 papers

Surfaces in three-dimensional Lie groups

D. A. Berdinskiia, I. A. Taimanovb

a Novosibirsk State University
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: We derive the Weierstrass (or spinor) representation for surfaces in the three-dimensional Lie groups Nil,$\widetilde{SL}_2$ , and Sol with Thurston's geometries and establish the generating equations for minimal surfaces in these groups. Using the spectral properties of the corresponding Dirac operators, we find analogs of the Willmore functional for surfaces in these geometries.

Keywords: surface, three-dimensional Lie group, Weierstrass representation, Willmore functional.

UDC: 514.772.22

Received: 28.04.2005


 English version:
Siberian Mathematical Journal, 2005, 46:6, 1005–1019

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025