RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2004 Volume 45, Number 4, Pages 723–733 (Mi smj1102)

This article is cited in 4 papers

Injectivity of the spherical mean operator on the conical manifolds of spheres

M. L. Agranovskiia, E. K. Narayananb

a Bar-Ilan University
b Indian Institute of Science

Abstract: Let $f$ be a continuous function on $\mathbb{R}^n$. If $f$ has zero integral over every sphere intersecting a given subset $A$ of $\mathbb{R}^n$ and $A$ lies in no affine plane of dimension $n-2$, then $f$ vanishes identically. The condition on the dimension of $A$ is sharp.

Keywords: spherical mean, wave equation, dependence domain.

UDC: 517.51

Received: 30.03.2004


 English version:
Siberian Mathematical Journal, 2004, 45:4, 597–605

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024