RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2003 Volume 44, Number 1, Pages 69–72 (Mi smj1168)

This article is cited in 1 paper

On solvable groups of exponent 4

G. S. Deryabinaa, A. N. Krasilnikovb

a N. E. Bauman Moscow State Technical University
b Moscow State Pedagogical University

Abstract: Given an arbitrary identity $v=1$, there exists a positive integer $N=N(v)$ such that for every metabelian group $G$ and every generating set $A$ for $G$ the following holds: If each subgroup of $G$ generated by at most $N$ elements of $A$ satisfies the identity $v=1$ then the group $G$ itself satisfies this identity. A similar assertion fails for center-by-metabelian groups. This answers Bludov's question.

Keywords: solvable group, identity, group of exponent 4.

UDC: 512.543

Received: 15.05.2002


 English version:
Siberian Mathematical Journal, 2003, 44:1, 58–60

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024