RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2003 Volume 44, Number 3, Pages 542–549 (Mi smj1196)

A free associative algebra as a free module over a Specht subalgebra

A. V. Gavrilov

Institute of Computational Mathematics and Mathematical Geophysics (Computing Center), Siberian Branch of the Russian Academy of Sciences

Abstract: Let $k$ be a field of characteristic 0 and let $k\langle X\rangle$ be a free associative algebra with finite basis $X$. Let $R=R(k,X)$ be the universal enveloping algebra of the square of $\operatorname{Lie}(X)$, regarded as a subalgebra of $k\langle X\rangle$ and called the Specht subalgebra of the free algebra. We prove that $k\langle X\rangle$ is a free (left) $R$-module, find sufficient conditions for some system of elements in $k\langle X\rangle$ to be a basis for this module, and obtain an explicit formula that allows us to calculate the $R$-coefficients of the elements of the free algebra over a special basis of “symmetric monomials”.

Keywords: free associative algebra, free module over a subalgebra, noncommutative symmetric polynomial.

UDC: 519.48

Received: 11.12.2002


 English version:
Siberian Mathematical Journal, 2003, 44:3, 428–434

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024