RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2003 Volume 44, Number 4, Pages 810–819 (Mi smj1215)

This article is cited in 32 papers

On an embedding criterion for interpolation spaces and application to indefinite spectral problems

A. I. Parfenov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: An embedding criterion for interpolation spaces is formulated and applied to the study of the Riesz basis property in the $L_{2,|g|}$ space of eigenfunctions of an indefinite Sturm–Liouville problem $u''=\lambda gu$ on the interval $(-1,1)$ with the Dirichlet boundary conditions, provided that the function $g(x)$ changes sign at the origin. In particular, the basis property criterion is established for an odd $g(x)$. Some connections with stability in interpolation scales are discussed.

Keywords: indefinite Sturm–Liouville problem, interpolation space, Riesz basis property.

UDC: 517.927.25

Received: 05.04.2002


 English version:
Siberian Mathematical Journal, 2003, 44:4, 638–644

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024