RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2003 Volume 44, Number 6, Pages 1199–1216 (Mi smj1248)

This article is cited in 8 papers

On the pseudospectra of multidimensional integral operators with homogeneous kernels of degree $-n$

O. G. Avsyankin, N. K. Karapetyants

Rostov State University

Abstract: We study the limit behavior of the spectral characteristics of truncated multidimensional integral operators whose kernels are homogeneous of degree $-n$ and invariant under the rotation group $SO(n)$. We prove that the limit of the $\varepsilon$-pseudospectra of the truncated operators $K_{\tau}$ as $\tau\to0$ is equal to the union of the $\varepsilon$-pseudospectra of the original operator $K$ and the “transposed” operator $\widetilde{K}$.

Keywords: multidimensional integral operator, homogeneous kernel, spectrum, pseudospectrum, truncated operator.

UDC: 517.9

Received: 04.06.2003


 English version:
Siberian Mathematical Journal, 2003, 44:6, 935–950

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024