RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2002 Volume 43, Number 3, Pages 600–608 (Mi smj1315)

This article is cited in 6 papers

On a free action of a group on an Abelian group

V. D. Mazurov, V. A. Churkin

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: Let $x$ be an element of order 3 in a group $G$ acting freely on a nontrivial abelian group. If for every $g\in G$ the order of the commutator $[x,g]$ is finite then x belongs to a finite normal subgroup of $G$.

UDC: 512.542

Received: 10.04.2002


 English version:
Siberian Mathematical Journal, 2002, 43:3, 480–486

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025