RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2002 Volume 43, Number 6, Pages 1283–1292 (Mi smj1369)

This article is cited in 3 papers

Frattini theory for classes of finite universal algebras of Mal'tsev varieties

Guo Wenbina, K. P. Shumb

a Department of Mathematics, Xuzhou Normal University, Xuzhou, P. R. China
b Department of Mathematics, The Chinese University of Hong Kong Shatin, Hong Kong, P. R. China (SAR)

Abstract: We extend the Frattini theory of formations and Schunck classes of finite groups to some Frattini theory of formations and Schunck classes of finite universal algebras of Malcev varieties. We prove that if $F\neq(1)$ is a nonempty formation (Schunck class) of algebras of a Malcev variety, then its Frattini subformation (Frattini Schunck subclass) $\Phi(F)$ consists of all nongenerators of $F$ moreover, if $M$ is a formation (Schunck class) in $F$ then $\Phi(M)\subseteq\Phi(F)$.

Keywords: universal algebra, formation, Schunck class, Frattini theory.

UDC: 512.542

Received: 16.10.2001


 English version:
Siberian Mathematical Journal, 2002, 43:6, 1039–1046

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024