RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2001 Volume 42, Number 5, Pages 1106–1116 (Mi smj1408)

This article is cited in 1 paper

Optimal error of analytic continuation from a finite set with inaccurate data in Hilbert spaces of holomorphic functions

L. S. Maergoiza, A. M. Fedotovb

a Krasnoyarsk State Academy of Architecture and Construction
b Institute of Computing Technologies, Siberian Branch of the Russian Academy of Sciences

Abstract: We consider the problem of analytic continuation with inaccurate data from a finite subset $U$ of a domain $D$ of $\mathbb{C}^n$ to a point $z_0\in D\setminus U$ функции $f$ из $H(D)$ for the functions f belonging to a bounded correctness set $V$ in a Hilbert space $H(D)$ of analytic functions in $D$. In the case when $H(D)$ is a Hilbert space with a reproducing kernel, we find constructive formulas for calculating the optimal error, the optimal function, and the optimal linear algorithm for extrapolation to a point $z_0$ for functions in $V$ whose approximate values are given on a set $U$. Moreover, we study the asymptotics of the optimal error in the case when the errors of initial data vanish

UDC: 517.555+517.547+517.988

Received: 05.01.2001


 English version:
Siberian Mathematical Journal, 2001, 42:5, 926–935

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024