RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2001 Volume 42, Number 5, Pages 998–1011 (Mi smj1421)

This article is cited in 4 papers

Estimation of the length of a simple geodesic on a convex surface

V. A. Vaiganta, O. Yu. Matukevichb

a Universität Münster
b Altai State University

Abstract: It was proved by I. M. Liberman that for a $C^2$-smooth closed surface $M$ of positive Gaussian curvature there exists a number $l$ such that any geodesic arc on $M$ of length at least $l$ is not simple. In this article we indicate a lower bound for $l$. We exhibit an example showing that our estimate is unimprovable.

UDC: 514

Received: 27.06.2000
Revised: 12.02.2001


 English version:
Siberian Mathematical Journal, 2001, 42:5, 833–845

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024