Abstract:
We propose an algorithm that transforms a real symplectic matrix with a stable structure to a block diagonal form composed of three main blocks. The two extreme blocks of the same size are associated respectively with the eigenvalues outside and inside the unit circle. Moreover, these eigenvalues are symmetric with respect to the unit circle. The central block is in turn composed of several diagonal blocks whose eigenvalues are on the unit circle and satisfy a modification of the Krein–Gelfand–Lidskii criterion. The proposed algorithm also gives a qualitative criterion for structural stability.