RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2001 Volume 42, Number 4, Pages 888–891 (Mi smj1431)

This article is cited in 6 papers

On a group that acts freely on an Abelian group

V. D. Mazurov, V. A. Churkin

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: A subgroup of $SL_2(C)$ is proven finite whenever it is generated by two elements $x$ and $y$ of order 3 such that the orders of $xy$ and $xy^{-1}$ are finite. It follows that a group acting freely on a nontrivial abelian group is finite whenever it is generated by two elements $x$ and $y$ of order 3 such that the orders of $xy$ and $xy^{-1}$ are finite.

UDC: 512.542

Received: 14.02.2001


 English version:
Siberian Mathematical Journal, 2001, 42:4, 748–750

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025