Abstract:
We solve an abstract parabolic problem in a separable Hilbert space, using the projection-difference method. The spatial discretization is carried out by the Galerkin method and the time discretization, by the Crank–Nicolson scheme. On assuming weak solvability of the exact problem, we establish effective energy estimates for the error of approximate solutions. These estimates enable us to obtain the rate of convergence of approximate solutions to the exact solution in time up to the second order. Moreover, these estimates involve the approximation properties of the projection subspaces, which is illustrated by subspaces of the finite element type.