RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 1993 Volume 34, Number 3, Pages 179–189 (Mi smj1664)

Surfaces of generalized constant width

V. A. Toponogov


Abstract: An orientable closed connected surface $\Phi$ is called a surface of generalized constant width $d$ if: 1) the end of the vector $Op^*=Op+dn(p)$ lies on $\Phi$ for every $p\in\Phi$, where $n(p)$ is the inward unit normal; 2) the map $\varphi\colon p\to p^*$ is an involution. We prove the following
Theorem. If $\Phi$ is an analytic surface of generalized constant width $d$ and satisfies the condition $|K(p)|=|K(p^*)|$ then $\Phi$ is a sphere, with $K(p)$ denoting the Gaussian curvature of $\Phi$ at $p$.

UDC: 513.013

Received: 13.06.1990
Revised: 02.11.1992


 English version:
Siberian Mathematical Journal, 1993, 34:3, 555–565

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024