RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 1993 Volume 34, Number 2, Pages 110–120 (Mi smj1678)

This article is cited in 2 papers

The moment problem in $K_\sigma$-space

S. A. Malyugin


Abstract: Hamburger's moment problem is considered for a sequence of vectors in some $K_\sigma$-space ($=\sigma$ complete vector lattice). The decomposition of $K_\sigma$-space in the band of nonuniqueness and the band in which a solution is unique is obtained. For any element in the Weyl–Hamburger vector circle, a respective solution to the moment problem is constructed. The solution is constructed by extension of a positive operator according to the modified Riesz–Kantorovich method.

UDC: 517.98

Received: 16.10.1991


 English version:
Siberian Mathematical Journal, 1993, 34:2, 297–306

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025